Chapter 3 Expressions and Equations

Four Square

1-7. Sample answers are given.
1.

Definition An algebraic expression is in simplest form when it has: 1. no like terms and 2. no parentheses.	Words To write an algebraic expression in simplest form: Step 1: Rewrite as a sum. Step 2: Use the Distributive Property on parentheses, if necessary. Step 3: Rearrange terms. Step 4: Combine like terms.
Simplest form	
Example $\begin{aligned} & 5 x^{2}+6 x-3 x^{2}+8-x \\ & =5 x^{2}+6 x+\left(-3 x^{2}\right)+8+(-1 x) \\ & =5 x^{2}+\left(-3 x^{2}\right)+6 x+(-1 x)+8 \\ & =[5+(-3)] x^{2}+[6+(-1)] x+8 \\ & =2 x^{2}+5 x+8 \end{aligned}$	Example $\begin{aligned} & 9-3\left(\frac{2}{3} m-\frac{1}{3}\right)+3 m \\ & =9+(-3)\left(\frac{2}{3} m+\left(-\frac{1}{3}\right)\right)+3 m \\ & =9+(-3)\left(\frac{2}{3} m\right)+(-3)\left(-\frac{1}{3}\right)+3 m \\ & =9+(-2 m)+1+3 m \\ & =(-2 m)+3 m+9+1 \\ & =(-2+3) m+(9+1) \\ & =m+10 \end{aligned}$

3.

Words Write the expression as a product of factors. You can use the Distributive Property.	Example Factor 12a-30 using the GCF. $\begin{aligned} & 12 a=(2) \cdot 2 \cdot(3) \cdot a \\ & 30=(2) \cdot(3) \cdot 5 \\ & G C F=2 \cdot 3=6 \\ & \begin{aligned} 12 a-30 & =6(2 a)-6(5) \\ & =6(2 a-5) \end{aligned} \end{aligned}$

2.

4.

Words Two equations are equivalent equations if they have the same solutions. You can use the Addition, Subtraction, Multiplication, and Division Properties of Equality to write equivalent equations.	Algebra $\begin{aligned} & a=b \text { and } a+c=b+c \\ & a=b \text { and } a-c=b-c \\ & a=b \text { and } a \cdot c=b \cdot c \\ & a=b \text { and } \frac{a}{c}=\frac{b}{c}, c \neq 0 \end{aligned}$
Examples $\begin{aligned} & x-7=2 \text { and } \\ & x-7+7=2+7 \\ & 2 d+5=-7 \text { and } \\ & 2 d+5-5=-7-5 \\ & 24=\frac{y}{-4} \text { and } \\ & -4 \cdot 24=-4 \cdot \frac{y}{-4} \\ & 3 c=-12 \text { and } \frac{3 c}{3}=\frac{-12}{3} \end{aligned}$	Non-Examples $\begin{aligned} & x+7=2 \text { and } \\ & x+7-7=2+7 \\ & 3 c=-4 \text { and } \frac{3 c}{3}=3 \cdot(-4) \\ & 7=m+3 \text { and } \\ & 7-7=m+3-3 \\ & 3 x+7=3 \text { and } 3 x=7+3 \end{aligned}$

Chapter 3 (continued)

5.

Words To undo addition, use the Subtraction Property of Equality: subtracting the same number from each side of an equation produces an equivalent equation. To undo subtraction, use the Addition Property of Equality: adding the same number to each side of an equation produces an equivalent equation.	Algebra If $a+b=c$, then $a+b-b=c-b$. If $a-b=c$, then $a-b+b=c+b$.
Solving equations using addition or subtraction	
Example	Example
Check $\begin{array}{rrrr} x-4=12 & x-4 & =12 \\ \frac{+4}{x}=\frac{+4}{16} & 16-4 \stackrel{?}{=} 12 \\ 12 & =12 \end{array}$	Check $\begin{array}{rrr} x+4.1=12 & x+4.1 & =12 \\ \frac{-4.1}{x}=\frac{-4.1}{7.9} & 7.9+4.1 \stackrel{?}{=} 12 \\ 12 & =12 \end{array}$

6.

7.

Words	Example	
Undo the operations in the reverse order of the order	$3 x+4=1$	Check $3 x+4=1$
of operations:	-4 -4	$3(-1)+4 \stackrel{?}{=} 1$
1. Undo addition or	$3 x=-3$	$-3+4 \stackrel{?}{=} 1$
subtraction.	$3 x=-3$	1 = 1
2. Undo multiplication or division.	$\frac{3 x}{3}=\frac{-3}{3}$	\checkmark
After solving for the variable,	1	
check your solution. Solving two-step		
Example		
Example Chec	Example	
$\frac{3}{7}-\frac{a}{3}=-\frac{4}{7} \quad \frac{3}{7}-\frac{a}{3}=-\frac{4}{7}$	$4(x-2)=12$	Check $4(x-2)=12$
$-\frac{3}{7} \quad-\frac{3}{7} \quad \frac{3}{7}-\frac{3}{3} \stackrel{?}{=}-\frac{4}{7}$	$4 x+(-8)=12$	$4(5-2) \stackrel{?}{=} 12$
$-\frac{a}{3}=\overline{-1} \quad \frac{3}{7}+(-1) \stackrel{?}{=}-\frac{4}{7}$	$\underline{+8}+8$	$4(3) \stackrel{?}{=} 12$
- $\left(-\frac{a}{3}\right)=-3 \cdot(-1) \frac{3}{7}+\left(-\frac{7}{7}\right) ?-\frac{4}{7}$	$4 x=20$	$12=12$
$=3 \quad \begin{array}{ll}\text { a }\end{array}$	$4 \frac{4}{4}$	\checkmark
$\frac{7}{7}=-\frac{1}{7}$	$x=5$	

